Nanotyrannus ("dwarf tyrant") is a potentially dubious genus of tyrannosaurid dinosaur. It is known only from two specimens (possibly three), which are potentially juvenile specimens of the contemporary genus Tyrannosaurus rex.


Nanotyrannus is based on CMNH 7541, a skull collected in 1942 by David Hosbrook Dunkle and described by Charles W. Gilmore in 1946, who classified it as a new species in the tyrannosaur genus Gorgosaurus as G. lancensis.[1] In 1988, the specimen was re-described by Robert T. Bakker, Phil Currie, and Michael Williams, then the curator of paleontology at the Cleveland Museum of Natural History, where the original specimen was housed and is currently on display. Their initial research indicated that the skull bones were fused, and that it therefore represented an adult specimen. In light of this, Bakker and colleagues assigned the skull to a new genus, named Nanotyrannus for its apparently small adult size. The specimen is estimated to have been around 5.2 metres (17 ft) long when it died. However, a detailed analysis of the specimen by Thomas Carr in 1999 showed that the specimen was in fact a juvenile, leading Carr and many other paleontologists to consider it a juvenile specimen of Tyrannosaurus rex.[3][4]

In 2001, a more complete juvenile tyrannosaur (nicknamed "Jane", catalogue number BMRP 2002.4.1), belonging to the same species as the original Nanotyrannus specimen, was uncovered. This discovery prompted a conference on tyrannosaurs focused on the issues of Nanotyrannus validity, held at the Burpee Museum of Natural History in 2005. Several paleontologists who had previously published opinions that N. lancensis was a valid species,[5] including Currie and Williams, saw the discovery of "Jane" as a confirmation that Nanotyrannus was in fact a juvenile T. rex.[6][7] On the other hand, some, such as Peter Larson, continued to support the hypothesis that Nanotyrannus lancensis was a separate but closely related species.[8] In 2015, Professor Phil Manning and Dr Charlotte Brassie of Manchester University studied Jane using a LIDAR scanner, and using data and computer modelling, their reconstruction of body mass suggested that Jane had a 600 kg - 900 kg body mass, far lower than would be expected for a Tyrannosaurus.[9] Also in 2015, Assistant Professor Holly Woodward Ballard of Oklahoma State University used histology to examine a thin slice of Jane's femur. Counting the rings within Jane's bone material showed that Jane was 11 years old, and bone histology suggests that Jane was still growing.

The actual scientific study of "Jane", set to be published by Bakker, Larson, and Currie, may help determine whether Nanotyrannus is a valid genus, whether it simply represents a juvenile T. rex, or whether it is a new species of a previously identified genus of tyrannosaur.

In late 2011, news reports about a 2006 discovery of a new, virtually complete Nanotyrannus specimen found along with a ceratopsid were made. The specimens were studied by Robert Bakker and Pete Larson on-site, who identified the ceratopsian as Triceratops. The Nanotyrannus specimen, nicknamed "Bloody Mary", allegedly has arms almost 3 feet in length, with the bones of the hand said to be one and a half times longer than those of the T. rex specimen "Sue" but the truth to those claims is impossible to determine along with further analysis of the "Bloody Mary" specimen as it remains in private hands.

The fact that the small "Bloody Mary" specimen was found alongside such a physically mismatched opponent as a large ceratopsian has been used to suggest that N. lancensis was a pack hunter. Robert Bakker also found evidence for pack hunting in N.lancensis in the presence of some 30 Nanotyrannus teeth embedded throughout the skeleton of one Triceratops carcass.

Differences from Tyrannosaurus rex

The primary differences that some scientists have used to distinguish Nanotyrannus lancensis from Tyrannosaurus rex primarily concern the number of teeth. Nanotyrannus had more teeth in its upper and lower jaws than an adult Tyrannosaurus. N. lancensis had 14-15 teeth in each side of the upper jaw (maxilla) and 16 teeth in each side of the lower jaw (dentary). T. rex, on the other hand, had 11-12 tooth positions in the upper jaw and 11-14 in the lower. The exact implications of this difference in tooth count has been controversial. In his 1999 study of tyrannosaurid growth patterns, Carr showed that, in Gorgosaurus libratus, the number of teeth decreased as the animal grew, and he used this data to support the hypothesis that N. lancensis is simply a juvenile T. rex.[3] The team of scientists who studied growth in the related Tarbosaurus bataar found little to no decrease in tooth count as that species grew, even though they had juvenile specimens much younger than the Nanotyrannus specimens. These researchers also noted, however, that in both Tyrannosaurus and Gorgosaurus, there were significant differences in tooth count between individuals of the same age group, and that tooth count may vary on an individual basis not related to growth. A juvenile Tarbosaurus skull discovered in 2006 exhibits the same tooth count as do adult Tarbosaurus skulls, supporting the retention of Nanotyrannus as a distinct genus. Larson has also contended that, along with skull features, Nanotyrannus can also be distinguished from Tyrannosaurus by proportionally larger hands with phalanges on the third metacarpal and in the furcula morphology.

Another difference cited by those who support the validity of N. lancensis is the presence of a small foramen, or pit, in the quadratojugal, a bone in the back corner of the skull. Both the holotype and the "Jane" specimen have this feature, suggesting it is not a deformity, and it is not known in any adult tyrannosaurid specimens. It is possible that this is again an individual variant, or that it was a feature lost as the animals grew, though studies of other juvenile tyrannosaurids do not show an equivalent feature.[4] However, most of the differences claimed to support Nanotyrannus turned out to be individually or ontogenetically variable features.[14] The foramen at the quadratojugal is also problematic for the validity of Nanotyrannus, as skull sutures are ambiguous evidence for maturity in archosaurs.

3D models of the brain cavities of the holotype skull and T. rex's skull show that blood vessel positions and those of the optic nerve attachments do not match, possibly suggesting a distinction between Nanotyrannus and T. rex.[9] This could be accounted for by changes in the skull shape as T. rex grows.

The Land Before Time

Nanotyrannus TLBT

Nanotyrannus sprite sheet

Nanotyrannus Ingame

Nanotyrannus Ingame

Nanotyrannus appeared as an enemy in The Land Before Time for Gameboy Advance. They appear in the second area of the game, Smelly Swamp, and the fourth area of the game, Dark Cavern. They will walk back and forth until they see the player, with it then trying to charge and bite the player. However, it can be defeated by jumping on its back twice. It gives the player 400 points when defeated, the highest of any enemy by this point in the game.